A structured view on pattern mining-based biclustering

نویسندگان

  • Rui Henriques
  • Cláudia Antunes
  • Sara C. Madeira
چکیده

Mining matrices to find relevant biclusters, subsets of rows exhibiting a coherent pattern over a subset of columns, is a critical task for a wide-set of biomedical and social applications. Since biclustering is a challenging combinatorial optimization task, existing approaches place restrictions on the allowed structure, coherence and quality of biclusters. Biclustering approaches relying on pattern mining (PM) allow an exhaustive yet efficient space exploration together with the possibility to discover flexible structures of biclusters with parameterizable coherency and noise-tolerance. Still, state-of-the-art contributions are dispersed and the potential of their integration remains unclear. This work proposes a structured and integrated view of the contributions of state-of-the-art PMbased biclustering approaches, makes available a set of principles for a guided definition of new PMbased biclustering approaches, and discusses their relevance for applications in pattern recognition. Empirical evidence shows that these principles guarantee the robustness, efficiency and flexibility of PM-based biclustering. & 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BiCross : A Biclustering Technique for Gene Expression Data using One Layer Fixed Weighted Bipartite Graph Crossing Minimization

Biclustering has become an important data mining technique for microarray gene expression analysis and profiling, as it provides a local view of the hidden relationships in data, unlike a global view provided by conventional clustering techniques. This technique, in contrast to the conventional clustering techniques, helps in identifying a subset of the genes and a subset of the experimental co...

متن کامل

Evolutionary Biclustering of Clickstream Data

Biclustering is a two way clustering approach involving simultaneous clustering along two dimensions of the data matrix. Finding biclusters of web objects (i.e. web users and web pages) is an emerging topic in the context of web usage mining. It overcomes the problem associated with traditional clustering methods by allowing automatic discovery of browsing pattern based on a subset of attribute...

متن کامل

Mining Correlated Bicluster from Web Usage Data Using Discrete Firefly Algorithm Based Biclustering Approach

For the past one decade, biclustering has become popular data mining technique not only in the field of biological data analysis but also in other applications like text mining, market data analysis with high-dimensional two-way datasets. Biclustering clusters both rows and columns of a dataset simultaneously, as opposed to traditional clustering which clusters either rows or columns of a datas...

متن کامل

BIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis

Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing s...

متن کامل

New metaheuristics approaches for biclustering of gene expression data

Motivations Biclustering or simultaneous clustering of both genes and conditions have generated considerable interest over the past few decades, particularly related to the analysis of high-dimensional gene expression data in information retrieval, knowledge discovery, and data mining [1]. Given a gene expression data matrix, a bicluster is a submatrix of genes and conditions that exhibits a hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2015